Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If   f(x)={sinxifx0x2+a2,if0<x<1bx+2,if1x20,ifx>2 is continuous

On IR, then a+b+ab=


A) -2

B) 0

C) 2

D) -1

Answer:

Option D

Explanation:

Given,

f(x)={sinxifx0x2+a2,if0<x<1bx+2,if1x20,ifx>2

is continuous on IR,

    limx0f(x)=limx0+f(x) and

limx2f(x)=limx2+f(x)  

    limx0sinx=limx0x2+a2

 and limx2bx+2=limx2+0

      0=0+a2 and 2b+2=0

   a=0 and b=-1

Now, a+b+ab=0+(1)+0=1