Answer:
Option D
Explanation:
Given,
f(x)={sinxifx≤0x2+a2,if0<x<1bx+2,if1≤x≤20,ifx>2
is continuous on IR,
∴ limx→0−f(x)=limx→0+f(x) and
limx→2−f(x)=limx→2+f(x)
⇒ limx→0−sinx=limx→0−x2+a2
and limx→2−bx+2=limx→2+0
⇒ 0=0+a2 and 2b+2=0
⇒ a=0 and b=-1
Now, a+b+ab=0+(−1)+0=−1