Processing math: 13%


1)

In the expansion of (1+x)n , the coefficients of p th and (p+1) th terms are respectively p and q then p+q= 


A) n+3

B) n+2

C) n

D) n+1

Answer:

Option D

Explanation:

In the expansion of (1+x)n , the general term i.e, (r+1) th term is

  Tr+1=nCr(1)nrxr=nCrxr

Coefficient of (r+1) th term is ^{n}C_{r}

Similarly , coefficent of pth term =^{n}C_{p-1}

\therefore           p=^{n}C_{p-1}(given)

            p=\frac{n!}{(p-1)!(n-p+1)!}   ........(i)

and coefficient of (p+1) th term= ^{n}C_{p}

\therefore    q=^{n}C_{p}(given)     .........(ii)

On dividing Eq.(i) by Eq.(ii), we get

\frac{p}{q}=\frac{\frac{n!}{(p-1)!(n-p+1)!}}{^{n}C_{p}}=\frac{\frac{n!}{(p-1)!(n-p+1)!}}{\frac{n!}{(p!)(n-p)!}}

=\frac{(p!)(n-p)!}{(n-p+1)!(p-1)!}=\frac{p(p-1)!(n-p)!}{(n-p+1)(n-p)!(p-1)!}

\Rightarrow    \frac{p}{q}=\frac{p}{n-p+1}

\Rightarrow   \frac{1}{q}=\frac{1}{n-p+1}

\Rightarrow  n-p+1=q

\Rightarrow   p+q=n+1