Answer:
Option D
Explanation:
In the expansion of (1+x)n , the general term i.e, (r+1) th term is
Tr+1=nCr(1)n−rxr=nCrxr
∴ Coefficient of (r+1) th term is ^{n}C_{r}
Similarly , coefficent of pth term =^{n}C_{p-1}
\therefore p=^{n}C_{p-1}(given)
p=\frac{n!}{(p-1)!(n-p+1)!} ........(i)
and coefficient of (p+1) th term= ^{n}C_{p}
\therefore q=^{n}C_{p}(given) .........(ii)
On dividing Eq.(i) by Eq.(ii), we get
\frac{p}{q}=\frac{\frac{n!}{(p-1)!(n-p+1)!}}{^{n}C_{p}}=\frac{\frac{n!}{(p-1)!(n-p+1)!}}{\frac{n!}{(p!)(n-p)!}}
=\frac{(p!)(n-p)!}{(n-p+1)!(p-1)!}=\frac{p(p-1)!(n-p)!}{(n-p+1)(n-p)!(p-1)!}
\Rightarrow \frac{p}{q}=\frac{p}{n-p+1}
\Rightarrow \frac{1}{q}=\frac{1}{n-p+1}
\Rightarrow n-p+1=q
\Rightarrow p+q=n+1