Answer:
Option D
Explanation:
In the expansion of $(1+x)^{n}$ , the general term i.e, (r+1) th term is
$T_{r+1}=^{n}C_{r} (1)^{n-r} x^{r}=^{n}C_{r} x^{r}$
$\therefore$ Coefficient of (r+1) th term is $^{n}C_{r}$
Similarly , coefficent of pth term =$^{n}C_{p-1}$
$\therefore$ $p=^{n}C_{p-1}$(given)
$p=\frac{n!}{(p-1)!(n-p+1)!}$ ........(i)
and coefficient of (p+1) th term= $^{n}C_{p}$
$\therefore$ $q=^{n}C_{p}$(given) .........(ii)
On dividing Eq.(i) by Eq.(ii), we get
$\frac{p}{q}=\frac{\frac{n!}{(p-1)!(n-p+1)!}}{^{n}C_{p}}=\frac{\frac{n!}{(p-1)!(n-p+1)!}}{\frac{n!}{(p!)(n-p)!}}$
$=\frac{(p!)(n-p)!}{(n-p+1)!(p-1)!}=\frac{p(p-1)!(n-p)!}{(n-p+1)(n-p)!(p-1)!}$
$\Rightarrow$ $\frac{p}{q}=\frac{p}{n-p+1}$
$\Rightarrow$ $\frac{1}{q}=\frac{1}{n-p+1}$
$\Rightarrow$ $n-p+1=q$
$\Rightarrow$ $p+q=n+1$