Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

The local maximum of y=x33x2+5 is attained at 


A) x=0

B) x=2

C) x=1

D) x=-1

Answer:

Option A

Explanation:

Given , y=x33x2+5  .........(i)

 On differentiating  both sides w.r.t 'x' , we get

 dydx=3x26x  ........(ii)

 For local maxima or local minima , put dydx=0

   3x26x=0

   3x(x2)=0

      x=0 or x=2

Now, differentiating Eq.(ii)  w.r.t .'x' we get

    d2ydx2=6x6

        (d2ydx2)x=0=6<0

   x=0  is a point of local maxima

and   (d2ydx2)x=2=6×26=126=6>0

     x=2 is a point of local minima