Answer:
Option A
Explanation:
Given , y=x3−3x2+5 .........(i)
On differentiating both sides w.r.t 'x' , we get
dydx=3x2−6x ........(ii)
For local maxima or local minima , put dydx=0
⇒ 3x2−6x=0
⇒ 3x(x−2)=0
⇒ x=0 or x=2
Now, differentiating Eq.(ii) w.r.t .'x' we get
d2ydx2=6x−6
⇒ (d2ydx2)x=0=−6<0
∴ x=0 is a point of local maxima
and (d2ydx2)x=2=6×2−6=12−6=6>0
∴ x=2 is a point of local minima