Answer:
Option A
Explanation:
We have,
a=2ˆi+ˆj−3ˆk
and b=ˆi+3ˆj+2ˆk
Clearly , c is parallel to a×b
Here, a×b=[ˆiˆjˆk21−3132]=ˆi(11)−ˆj(7)+ˆk(5)
11ˆi−7ˆj+5ˆk=d (say)
Now, ˆd=a×b|a×b|=11ˆi−7ˆj+5ˆk√195
Thus, c=|c|ˆd=2√195(11ˆi−7ˆj+5ˆk)
Hence, volume of the parallelopiped= [a b c]
= [21−313222√195−14√19510√195]
=2√195[21−313211−75]
= 2√195[2(29)−1(−17)−3(−40)]
=2√195[58+17+120]
= 2√195×195
=2√195