1) If tanθ1=kcotθ2 , then cos(θ1+θ2)cos(θ1−θ2)= A) 1+k1−k B) 1−k1+k C) k+1k−1 D) k−1k+1 Answer: Option BExplanation: We have tanθ1=kcotθ2 ⇒ tanθ1tanθ2=k Consider, cos(θ1+θ2)cos(θ1−θ2)=cosθ1cosθ2−sinθ1sinθ2cosθ1cosθ2+sinθ1sinθ2 =1−tanθ1tanθ21+tanθ1tanθ2 =1−k1+k