Answer:
Option B
Explanation:
We have $\tan \theta_{1}=k \cot \theta_{2}$
$\Rightarrow$ $\tan \theta_{1} \tan \theta_{2}$=k
Consider, $\frac{\cos (\theta_{1}+\theta_{2})}{\cos (\theta_{1}-\theta_{2})}=\frac{\cos \theta_{1}\cos \theta_{2}-\sin \theta_{1}\sin \theta_{2}}{\cos \theta_{1}\cos\theta_{2}+\sin \theta_{1}\sin \theta_{2}}$
$=\frac{1-\tan\theta_{1} \tan \theta_{2}}{1+\tan\theta_{1} \tan \theta_{2}}$
$=\frac{1-k}{1+k}$