Answer:
Option D
Explanation:
Given,
$a=\hat{i}+\hat{j}+\hat{k}$.
$b=\hat{i}-\hat{j}+2\hat{k}$
and $c=x\hat{i}+(x-2)\hat{j}-\hat{k}$
Since , the given vectors are coplanar , therefore
[a b c]=0
$\Rightarrow$ $\begin{bmatrix}1 & 1&1 \\1 & -1&2\\x&x-2&-1 \end{bmatrix}=0$
$\Rightarrow$ $1(1-2x+4)-1(-1-2x)+1(x-2+x)=0$
$\Rightarrow$ $5-2x+1+2x+2x-2=0$
$\Rightarrow$ $2x+4=0$
$\Rightarrow$ $2x=-4$
$\Rightarrow$ $x=-2$