Processing math: 100%


1)

If rank of  [xxxxx2xxxx+1] is 1, then 


A) x=0 or x=1

B) x=1

C) x=0

D) x0

Answer:

Option C

Explanation:

A= [xxxxx2xxxx+1] 

Since , rank A=1 , therefore atleast  one determined of order 1 should be  non-zero  and all the determinants of order 2 and 3 should be zero.

 If x=0 , then A=[000000001] , which have non-zero

 determinant of order 1 only.

If x=1, then  A=[111111112], which have a non-zero determinant of order 2, 

nearly [1112]

   x can  take value 0 only