1)

If 2x210xy+2λy2+5x16y3=0 represents a pair of straight  lines, then the point of intersection of those lines is 


A) (2,-3)

B) (5,-16)

C) (10,72)

D) (10,32)

Answer:

Option C

Explanation:

 On comparing  the given equations with

 ax2+2hxy+by2+2gx+2fy+c=0 , we get

 a=2,b=2λ,h=5,g=52

     f=-8,c=-3

 Since , the given equations  represents a pair of straight  lines, therefore

[ahghbfgfc]=0

  [255/252λ85/283]=0

      2(6λ64)+5(15+20)+52(405λ)=0

   12λ128+175+100252λ=0

     492λ=147

   λ=147×249=6

Now, the point of intersection of given lines is given by

    (bgfhh2ab,afghh2ab)=(30402524,16+2522524)

              =(10,72)