Answer:
Option C
Explanation:
Given , ABCD is a parallelogram with vertices A(4,4,-1), B(5,6,-1), C(6,5,1) and D(x,y,z)
We know that digonals of parallelogram ABCD bisects each other.

∴ Mid poinr of Ac= Mid point of BD
⇒ (4+62,4+52,−1+12)=(x+52,y+62,z−12)
⇒ (102,92,0)=(x+52,y+62,z−12)
On comparing both sides, we get
x+52=102,y+62=92 and z−12=0
⇒ x+5=10,y+6=9 and z−1=0
⇒ x=10−5,y=9−6 and z=1
⇒ x=5 ,y=3 and z=1
Thus , D(x,y,z)=D(5,3,1)