Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If a and b are unit vectors and α  is the angle between  them, then a+b is a unit vector when cosα=$


A) -12

B) 12

C) 32

D) 32

Answer:

Option A

Explanation:

We have, |a|=|b|=1 and α is the angle between a and b

 Clearly , cosα=a.b|a|.|b|

  cosα=a.b   .........(i)

 Now, let a+b is a unit vector , then

       |a+b|=1

     |a+b|2=1

   (a+b).(a+b)=1

   a.a+a.b+b.a+b.b=1

   |a|22a.b+|b|2=1     [a.b=b.a]

    1+2cosα+1=1   [using Eq.(i)]

     1+2cosα=0

  cosα=12