Answer:
Option A
Explanation:
We have, |a|=|b|=1 and α is the angle between a and b
Clearly , cosα=a.b|a|.|b|
⇒ cosα=a.b .........(i)
Now, let a+b is a unit vector , then
|a+b|=1
⇒ |a+b|2=1
⇒ (a+b).(a+b)=1
⇒ a.a+a.b+b.a+b.b=1
⇒ |a|2−2a.b+|b|2=1 [∵a.b=b.a]
⇒ 1+2cosα+1=1 [using Eq.(i)]
⇒ 1+2cosα=0
⇒ cosα=−12