Answer:
Option A
Explanation:
We have, |a|=|b|=1 and $\alpha$ is the angle between a and b
Clearly , $\cos \alpha=\frac{a.b}{|a|.|b|}$
$\Rightarrow$ $\cos \alpha=a.b$ .........(i)
Now, let a+b is a unit vector , then
|a+b|=1
$\Rightarrow$ $|a+b|^{2}=1$
$\Rightarrow$ $(a+b).(a+b)=1$
$\Rightarrow$ $a.a+a.b+b.a+b.b=1$
$\Rightarrow$ $|a|^{2}-2a.b+|b|^{2}=1$ $[ \because a.b=b.a]$
$\Rightarrow$ $1+2\cos \alpha+1=1$ [using Eq.(i)]
$\Rightarrow$ $1+2\cos \alpha=0$
$\Rightarrow$ $\cos \alpha= -\frac{1}{2}$