1)

The differential equation of the simple harmonic  motion given by $x=A \cos (nt+\alpha)$ is 


A) $\frac{d^{2}x}{dt^{2}}-n^{2}x=0$

B) $\frac{d^{2}x}{dt^{2}}+n^{2}x=0$

C) $\frac{d^{}x}{dt^{}}- \frac{d^{2}x}{dt}=0$

D) $\frac{d^{2}x}{dt^{2}}- \frac{d^{}x}{dt}+nx=0$

Answer:

Option B

Explanation:

Given ,$x=A \cos (nt+\alpha)$   ...........(i)

On differentiating x w.r.t .'t' we get

  $\frac{dx}{dt}=A\frac{d}{d} \cos (nt+\alpha)$

=$-A \sin (nt+\alpha) \frac{d}{dt}(nt+\alpha)$

=$-A \sin(nt+\alpha)(n)$

$\Rightarrow$    $\frac{dx}{dt}=-An\sin(nt+\alpha)$

$\Rightarrow$  $\frac{dx}{dt}=-\frac{x n \sin (nt+\alpha)}{(\cos (nt+\alpha)}$      [From Eq.(i)]

$\Rightarrow$     $\frac{dx}{dt}=-nx \tan (nt+\alpha)$     ........(ii)

Again differentiating w.r.t 't'  , we get

$\frac{d^{2}x}{dt^{2}}=-\left[nx \frac{d}{dt} \tan (nt+\alpha)+\tan (nt+\alpha) \frac{d}{dx} nx\right]$

 $=-\left[nx \sec^{2}(nt+\alpha)\frac{d}{dt}(nt+\alpha)+\tan(nt+\alpha)\frac{dx}{dt} \times n\right]$

    $=-\left[nx \sec^{2}(nt+\alpha)n+n \tan(nt+\alpha)x-nx \tan(nt+\alpha)\right]$

                                                                                                   [From Eq.(ii)]

$=-\left[n^{2}x \sec^{2}(nt+\alpha)-n^{2}x \tan^{2}(nt+\alpha)\right]$

$=-n^{2}x[\sec^{2}(nt+\alpha)-\tan^{2}(nt+\alpha)]$

 $= -n^{2}x \times 1$       $[ \because \sec^{2} \theta-\tan^{2} \theta=1]$

$\Rightarrow$     $\frac{d^{2}x}{dt^{2}}=-n^{2}x$

$\Rightarrow$    $\frac{d^{2}x}{dt^{2}}+n^{2}x=0$