1)

 The angle between the curves $x^{2}=8y$  and xy=8 is 


A) $\tan^{-1}\left(\frac{-1}{3}\right)$

B) $\tan^{-1}(-3)$

C) $\tan^{-1}\left(-\sqrt{3}\right)$

D) $\tan^{-1}\left(\frac{-1}{\sqrt{3}}\right)$

Answer:

Option B

Explanation:

Given equation of curves are

            $x^{2}=8y$  .......(i)

    and xy=8      ..........(ii)

 On substituting the value of y from Eq.(i) in Eq.(ii)  ,

we get

                 $x\left(\frac{x^{2}}{8}\right)=8$

$\Rightarrow$        $x^{3}=64$

   $\Rightarrow$      x=4

 On substituting  x=4 in Eq.(ii)  , we get  y=2

 Thus , the point of intersection of given curves is (4,2)

 Now, let $m_{1}$  be the slope of tangent to the curve (i) at point (4,2)  and $m_{2}$  be the slope of tangent to the curve (ii)

at point (4,2)

 Then, $m_{1}=\frac{4}{4}=1$

                          $\left[ \because x^{2}=8y \Rightarrow 2x=8\frac{dy}{dx}\Rightarrow \frac{dy}{dx}=\frac{x}{4}\right]$

 and $m_{2}= \frac{-2}{4}=-\frac{1}{2}$

                    $\left[ \because xy=8 \Rightarrow x\frac{dy}{dx}+y=0\Rightarrow \frac{dy}{dx}=\frac{-y}{4}\right]$

 Now, the angle $\theta$  between the curves is given by

             $\tan \theta= \left(\frac{m_{2}-m_{1}}{1+m_{1}m_{2}}\right)$

                 = $ \left(\frac{\frac{-1}{2}-1}{1-\frac{1}{2}}\right)=\left(\frac{\frac{-3}{2}}{\frac{1}{2}}\right)$

    $\Rightarrow$      $\tan \theta=-3$

   $\Rightarrow$=   $\theta= tan^{-1}(-3)$