Answer:
Option B
Explanation:
Given the equation of circle is
$S=x^{2}+y^{2}-13=0$ ...........(i)
On differentiating it w.r.t x, we get
$2x+2y \frac{dy}{dx}=0$
$\Rightarrow$ %$\frac{dy}{dx}=\frac{-x}{y}$
Now , slope of tangent , $m= \frac{dy}{dx}|_{at(2,3)}= \frac{-2}{3}$
$\Rightarrow$ $m=\frac{-2}{3}$
$\therefore$ $\left(m, -\frac{1}{m}\right)=\left(-\frac{2}{3},\frac{3}{2}\right)$
On substituting this point in LHS eq.(i), we get
LHS= $\frac{4}{9}+\frac{9}{4}-13$
$=\frac{16+81-468}{36}<0$
$\therefore$ $\left(m, -\frac{1}{m}\right)$ is an internal point with respect to the circle S=0