Answer:
Option B
Explanation:
Given the equation of circle is
S=x2+y2−13=0 ...........(i)
On differentiating it w.r.t x, we get
2x+2ydydx=0
⇒ %dydx=−xy
Now , slope of tangent , m=dydx|at(2,3)=−23
⇒ m=−23
∴ (m,−1m)=(−23,32)
On substituting this point in LHS eq.(i), we get
LHS= 49+94−13
=16+81−46836<0
∴ (m,−1m) is an internal point with respect to the circle S=0