Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If the slope of the tangent of the circle S=x2+y213=0 at (2,3)  is m, then the point  (m,1m)   is 


A) an external point with respect to the circle S=0

B) an internal point with respect to the circle S=0

C) the centre of the circle S=0

D) a point on the circle S=0

Answer:

Option B

Explanation:

Given  the equation of circle is 

  S=x2+y213=0  ...........(i)

On differentiating  it w.r.t x, we get

   2x+2ydydx=0

       %dydx=xy

 Now , slope of tangent ,   m=dydx|at(2,3)=23

                 m=23

          (m,1m)=(23,32)

 On substituting this point in LHS  eq.(i), we get

 LHS= 49+9413

 =16+8146836<0

      (m,1m)   is an internal point with respect to the circle S=0