Answer:
Option B
Explanation:
We have,
sin−1√32+sin−1√23
=π−sin−1[√32√1−(√23)2+√32√1−(√32)2]
As 0< √32=0.866,√23=0.816≤ 1 and
(√32)2+(√23)2=1.4167>1
[∵sin−1x+sin−1y=π−sin−1
x−√1−y2+y√1−x2,if0<x,y≤1 and x2+y2>1]
= π−sin−1[√32√1−23+√23√1−34]
= π−sin−1[√32√3−23+√23√4−34]
=π−sin−1[√321√3+√2√312]
=π−sin−1[√3+√22√3]