Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

The equation  of the straight  line passing  through the point of intersection of 5x6y1 , 3x+2y+5=0, and perpendicular to the line 3x5y+11=0 is 


A) 5x+3y+18=0

B) -5x-3y+18=0

C) 5x+3y+8=0

D) 5x+3y-8=0

Answer:

Option C

Explanation:

We know that point of intersection of two lines 

i.e,   ax1+by1+c1=0 and ax2+by2+c2=0  is 

    (b1cb2ca1b2a2b1,c1a2c2a1a1b2a2b1)

point of intersection of two lines  i.e,  

5x-6y-1=0  and 3x+2y+5=0 is 

     (6×52×15×23×6,1×35×55×23×6)

     =  (30+210+18,32510+18)

  = (2828,2828)=(1,1)

 and slope of line 3x-5+11=0 is m= 35

Equation of the line passing through (-1,-1)  and perpendicular to 3x-5y+11=0 is 

  (y+1)= 53(x+1)

     3(y+1)=53(x+1)

     3y+3=5x5

    5x+3y+3+3+5=0

     5x+3y+8=0