Answer:
Option B
Explanation:
Given,
$\triangle=\begin{bmatrix}1 & 5&6 \\0 & 1&7\\0&0&1 \end{bmatrix}$
= $1(1-0)-5(0-0)+6(0-0)$
=$1-0+0$
$\triangle =1$
If $\triangle=1$ and $\triangle ^{'}=\begin{bmatrix}1 & 0&1 \\3 & 0&3\\4&6&100 \end{bmatrix}$
=$1(0-18)-0(300-12)+1(18-0)$
=$-18-0+18$
$\triangle '=0$
Now, $(\triangle +\triangle')^{2}-3(\triangle+\triangle')+2$
=$(1+0)^{2}-3(1+0)+2$
=-2+2=0