Answer:
Option B
Explanation:
We know that equation of normal of the hyperbola x2a2−y2b2=1 is
a2xx1+b2yy1=a2−b2
∴ Equations of normal to the hyperbola x29−y24=1
is
9xx1+4yy1=9+4
⇒ 9xx1+4yy1=13
Since, line x+y=k is normal to the given hyperbola
∴ 9x11=4y11=13k
⇒ 9x1=4y1
= 13k
⇒ x1=9k13
y1=4k13
Since ((x1,y1) lie on the hyperbola
∴ (9k13)29−(4k13)29=1
⇒ 9k2169−4k2169=1
⇒ 5k2=169
⇒ k=±13√5