Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If the  line x+y+k=0 is a normal to the hyperbola  x29y24=1, then k

 


A) ±513

B) ±135

C) ±135

D) ±513

Answer:

Option B

Explanation:

 We know that  equation of normal of the hyperbola x2a2y2b2=1 is 

   a2xx1+b2yy1=a2b2

      Equations of normal to the hyperbola x29y24=1

 is 

  9xx1+4yy1=9+4

    9xx1+4yy1=13

  Since,  line x+y=k is normal to the given hyperbola 

     9x11=4y11=13k

      9x1=4y1

   = 13k

          x1=9k13

                y1=4k13

 Since ((x1,y1)  lie on the hyperbola

    (9k13)29(4k13)29=1

         9k21694k2169=1

     5k2=169

      k=±135