Answer:
Option B
Explanation:
We have,
(xa)n+(yb)n=2
on differentiating w.r.t x, we get
nxn−1an+nyn−1bndydx=0
⇒ dydx=−bnxn−1anyn−1
⇒ (dydx)(a,b)=−bnan−1anbn−1=−ba
Equations of tangent (a,b) is
y−b=−ba(x−a)
⇒ ay-ab=-bx+ab
⇒ bx+ay=2ab
⇒ bxab+ayab=2abab
⇒ xa+yb=2