Answer:
Option B
Explanation:
We have, $(1+x)^{42}$
$T_{2r+1}=^{42}C_{2r} x^{2r}$
$T_{r+1}= ^{42}C_{r}x^{r}$
Coefficient of $(2r+1)^{th}$ and $(r+1)^{th}$ term are equal
$\therefore$ $^{42}C_{2r}= ^{42}C_{r}$
$\therefore$ 2r+r=42 $[ \because ^{n}C_{x}=^{n}C_{y} \Rightarrow x+y=n]$
$\Rightarrow$ r=14