1) The solution of (y−3x2)dx+xdy=0 is A) y(x)=sinx+1x2+C B) y(x)=cosx−1x2+C C) y(x)=x2+Cx D) y(x)=√x+Cx Answer: Option CExplanation:We have, (y−3x2)dx+xdy=0 ⇒ ydx−3x2dx+xdy=0 ⇒ ydx+xdy=3x2dx ⇒ dxy=3x2dx On integrating both sides , we get xy=x3+C⇒y=x2+Cx