1)

The solution of $(y-3x^{2})dx+xdy=0$ is 


A) $y(x)= \sin x+\frac{1}{x^{2}}+C$

B) $y(x)= \cos x-\frac{1}{x^{2}}+C$

C) $y(x)= x^{2}+\frac{C}{x}$

D) $y(x)= \sqrt{x}+\frac{C}{x}$

Answer:

Option C

Explanation:

We have,

   $(y-3x^{2})dx+xdy=0$

$\Rightarrow$    $ydx-3x^{2}dx+xdy=0$

$\Rightarrow$  $ydx+xdy=3x^{2}dx$

$\Rightarrow$      $dxy=3x^{2}dx$

On integrating both sides , we get 

     $xy=x^{3}+C \Rightarrow  y=x^{2}+\frac{C}{x}$