1)

If   $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, the  $\frac{d^{2}y}{dx^{2}}=$


A) $-\frac{b^{4}}{a^{2}y^{3}}$

B) $\frac{b^{2}}{a^{}y^{2}}$

C) $-\frac{b^{3}}{a^{2}y^{3}}$

D) $\frac{b^{3}}{a^{2}y^{2}}$

Answer:

Option A

Explanation:

 We have, 

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

Let $x=a\cos \theta, y=b \sin \theta$

 $\therefore$      $\frac{dx}{d\theta}=-a \sin \theta, \frac{dy}{d \theta}=b \cos \theta$

 $\frac{dy}{dx}=-\frac{b}{a} \cot\theta$

On differentiating w.r.t $\theta$ , we get,

 $\frac{d^{2}y}{dx^{2}}=-\frac{b}{a}(- cosec^{2} \theta) \frac{d \theta}{dx}$

$\Rightarrow$    $\frac{d^{2}y}{dx^{2}}=\frac{b cosec^{2} \theta}{-a^{2} \sin \theta}$

$\Rightarrow$    $\frac{d^{2}y}{dx^{2}}=-\frac{b}{a^{2}\sin^{3} \theta}$

$\Rightarrow$      $\frac{d^{2}y}{dx}=\frac{-b^{4}}{a^{2}y^{3}}$   

                                               $\left[\because \sin \theta=\frac{y}{b}\right]$