Answer:
Option D
Explanation:
We have,
g(x)=(f(2f(x)+2))2
g'(x)=2(f(2f(x)+2).f'(2f(x)+2)f'(x).2
$\Rightarrow$ g'(0)=2(f(2f(0)+2).f'(2f(0)+2).2f'(0)
$\Rightarrow$ g'(0)=2(f(2(-1)+2).f'(2(-1)+2.2(1)
$[\because f(0)=-1,f'(0)=1]$
$\Rightarrow$ g'(0)=2[f(-2+2).f'(-2+2)].2
$\Rightarrow$ g'(0)=4f(0).f'(0)
$\Rightarrow$ g'(0)=4 x (-1)(1)
=-4