Answer:
Option B
Explanation:
Let z=x+iy
∴ 2z+1iz+1=2(x+iy)+1i(x+iy)+1=2x+1+iy(−y+1)+ix
=[(2x+1)+iy][(−y+1)−ix][(−y+1)+ix][(−y+1)−ix]
=(2x+1)(−y+1)−(2x+1)xi+y(−y+1)j+xy(−y+1)2+x2
=(2x+1)(−y+1)+xy+(−y2+y−2x2−x)i(−y+1)2+x2
It is given that imaginary part of 2z+1iz+1=−2
∴ −y2+y−2x2−x(−y+1)2+x2=−2
⇒ −y2+y−2x2−x=−2(−y+1)2−2x2
⇒ −y2+y−x=−2y2−2+4y
⇒ y2−3y−x+2=0
Which represent the equations of parabola