1)

If   $a=x\hat{i}+y\hat{j}+z\hat{k}, $ then 

 $(a \times \hat{i}).(\hat{i}+\hat{j})+(a \times \hat{j}).(\hat{j} +\hat{k})+(a \times \hat{k}).(\hat{k}+\hat{i})$=


A) x-y+z

B) x+y+z

C) x+y-z

D) -x+y+z

Answer:

Option B

Explanation:

We have,

$a=x\hat{i}+y\hat{j}+z\hat{k} $

    $(a \times \hat{i})(\hat{i}+\hat{j})+(\hat{a} \times \hat{j}) (\hat{j}+\hat{k})+(a \times \hat{k})(\hat{k} +\hat{i})$

  =$[a \hat{i}\hat{i}]+[a\hat{i}\hat{j}]+[a \hat{j}\hat{j}]+[a \hat{j} \hat{k}]+[a \hat{k} \hat{k}]+[a \hat{k}\hat{i}]$

             =$\left[a \hat{i}\hat{j}\right]+\left[a \hat{j} \hat{k}\right]+\left[a \hat{k} \hat{i}\right]$

                                                                          $[\because  [a \hat{i}\hat{i}]=[a \hat{j} \hat{j}]=[a \hat{k} \hat{k}]=0]$

=$a.(\hat{i} \times \hat{j})+a.(\hat{j} \times \hat{k})+a.(\hat{k} \times \hat{i})$

  =  $a.\hat{k}+a.\hat{i}+a.\hat{j}=a.(\hat{i}+\hat{j}+\hat{k})$

=$(x \hat{i}+y\hat{j}+z \hat{k}).(\hat{i}+\hat{j}+\hat{k})=x+y+z$