Answer:
Option C
Explanation:
We have,
$x=y^{2}-2$ and x=y
Graph of $x=y^{2}-2$ and x=y are
Solving, $x=y^{2}-2$ and x=y , we get (-1,-1) and (2,2)
Area of shaded region is
$\int_{-1}^{2} ydy-\int_{-1}^{2} (y^{2}-2)dy$
$\left[\frac{y^{2}}{2}-\frac{y^{3}}{3}+2y\right]_{-1}^{2}$=
$\left(\frac{4}{2}-\frac{8}{3}+4\right)-\left(\frac{1}{2}+\frac{1}{3}-2\right)$
= $\frac{10}{3}+\frac{7}{6}=\frac{27}{6}=\frac{9}{2}$