Answer:
Option A
Explanation:
We have,
$(x-1)^{3}+64$=0
$\Rightarrow$ $(x-1)^{3}=-64$
$\Rightarrow$ $(x-1)^{3}=(-4)^{3}$
$\Rightarrow$ x-1=-4,-4w,-4w2
$\Rightarrow$ x=-3,-4w+1,-4w2+1
Complex roots of the equations are
-4w+1,-4w2+1
Sum of complex roots are
-4w+1-4w2+1=-4(w+w2)+2
$=-4(-1)+2=4+2=6$ $[\because1+w+w^{2}=0]$