Answer:
Option A
Explanation:
We have,
Ratio of sides of triangle are $1: \sqrt{3}:2$
Let the sides $k,\sqrt{3}k, 2k,$
Since , this triangle is a right angle triangle
$(2k)^{2}=(\sqrt{3}k)^{2}+(k)^{2}=(2k)^{2}$
$\therefore$ $\sin A= \frac{\sqrt{3}k}{2k}=\frac{\sqrt{3}}{2}\Rightarrow A=60^{0}$
$\Rightarrow\sin C= \frac{k}{2k}=\frac{1}{2}\Rightarrow C=30^{0}$
$\Rightarrow$ B=900
$\therefore$ Ratio of angles are $30^{0}:60^{0}:90^{0}$
$\Rightarrow$ 1:2:3