Answer:
Option C
Explanation:
Let P(x,y), A=(5,3),B=(3,-2)
Area of $\triangle PAB$= $\frac{1}{2}\begin{bmatrix}x & y&1 \\5 & 3&1\\3&-2&1 \end{bmatrix}$
$\Rightarrow$ $9=\frac{1}{2}|x(3+2)-y(5-3)+(-10-9)|$
$\Rightarrow$ $18=|5x-2y-19|$
$\Rightarrow$ $5x-2y-16=|18|$
$\Rightarrow$ $5x-2y-19=\pm18$
$\Rightarrow$ $5x-2y=19 \pm 18$
$\Rightarrow$ $5x-2y=1 $ or $5x-2y=37$
Which represents a pair of parallel lines