Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If  cosecθcotθ=2017, then quadrant in which θ lies is 


A) I

B) IV

C) III

D) II

Answer:

Option D

Explanation:

 We have 

cosecθcotθ=2017    ........(i)

      cosecθ+cotθ=12017 ......(ii)

  [cosec2θcot2θ=1cosecθcotθ=1cosecθ+cotθ]

 Adding Eqs,(i) and (ii) , we get

     2cosecθ=2017+12017

      cosecθ=12[2017+12017]>0

 θ lie in 1st or II nd quadrant

 Substracting  Eq.(i) from Eq.(ii)  , we get

 2cotθ=120172017

cotθ=12(120172017)<0

 θ  lie in II nd and III rd quadrant

 Hence , θ lies in II nd quadrant