Answer:
Option D
Explanation:
We have
cosecθ−cotθ=2017 ........(i)
∴ cosecθ+cotθ=12017 ......(ii)
[∵cosec2θ−cot2θ=1⇒cosecθ−cotθ=1cosecθ+cotθ]
Adding Eqs,(i) and (ii) , we get
2cosecθ=2017+12017
⇒ cosecθ=12[2017+12017]>0
θ lie in 1st or II nd quadrant
Substracting Eq.(i) from Eq.(ii) , we get
2cotθ=12017−2017
cotθ=12(12017−2017)<0
θ lie in II nd and III rd quadrant
Hence , θ lies in II nd quadrant