Answer:
Option D
Explanation:
$S_{1}= x^{2}+y^{2}-4x-6y+5=0$
$S_{2}= x^{2}+y^{2}-2x-4y-1=0$
$S_{3}= x^{2}+y^{2}-6x-2y=0$
$S_{1}-S_{2}=0 \Rightarrow 2x+2y-6=0 \Rightarrow x+y-3=0 $ .....(i)
$S_{2}-S_{3}=0 \Rightarrow 4x-2y-1=0$ ......(ii)
Solving Eqs.(i) and (ii) , we get
$x=\frac{7}{6}, y=\frac{11}{6}$
$\left(\frac{7}{6},\frac{11}{6}\right)$ satisfies the equation 18x-12y+1=0