Answer:
Option A
Explanation:
We have,
$|a \times \hat{i}|^{2} + |a \times \hat{j}|^{2}+|a \times \hat{k}|^{2}$
$(|a||\hat{i}| \sin \alpha)^{2}+(|a||\hat{j}| \sin \beta)^{2}+(|a||\hat{k}| \sin \gamma)^{2}$
$= \sin^{2} \alpha+\sin^{2} \beta+\sin^{2} \gamma$ [ $\because |a|=|\hat{i}|=|\hat{j}|=|\hat{k}|=1]$
$=1- \cos^{2} \alpha+1-\cos^{2} \beta+1-\cos^{2} \gamma$
$=3-(\cos^{2} \alpha+\cos^{2} \beta+ \cos ^{2} \gamma)$
= 3-1=2 $[ \because \cos^{2} \alpha+\cos^{2} \beta+ \cos^{2} \gamma=1]$