1)

π0xdx4cos2x+9sin2x=


A) π212

B) π24

C) π26

D) π23

Answer:

Option A

Explanation:

We have,

 I=π0xdx4cos2x+9sin2x

        I=π0(πx)dx4cos2(πx)+9sin2(πx)  

   I=π0(πx)dx4cos2x+9sin2x

     2I=π0πdx4cos2x+9sin2x

     2I=π0πsec2xdx4+9tan2x

    2I=π/202πsec2xdx4+9tan2x

            [2a0f(x)dx2a0f(x)dxf(2ax)=f(x)]

      I=π9π/20sec2xdx49+tan2x

 Put   tanx=tsec2xdx=dt

       x=0,t=0,x=π2,t=

      I=π90dt(23)2+t2

    I=π9×32[tan13t2]0

     I=π9×32×π2=π212