1) If f is differentiable , f(x+y)=f(x)f(y) for all x,y∈IR, f(3)=3, f'(0)=11, then f'(3)= A) 311 B) 113 C) 8 D) 33 Answer: Option DExplanation: We have, f(x+y)=f(x)f(y) differentiate with respect to x, y as constant , we get f′(x+y)=f′(x)f(y) Put x=0 , y=3 we get f'(0+3)=f'(0).f(3) ⇒ f'(3) =f'(0).f(3) ⇒ f'(3)=11 x3 =33 [∵f′(0)=11,f(3)=3]