Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If f is differentiable  , f(x+y)=f(x)f(y) for all  x,yIR, f(3)=3, f'(0)=11, then f'(3)=


A) 311

B) 113

C) 8

D) 33

Answer:

Option D

Explanation:

 We have,

  f(x+y)=f(x)f(y)

 differentiate with respect to x, y as constant , we get

  f(x+y)=f(x)f(y)

 Put x=0 , y=3 we get

 f'(0+3)=f'(0).f(3)

     f'(3) =f'(0).f(3)

  f'(3)=11 x3 =33    [f(0)=11,f(3)=3]