Answer:
Option A
Explanation:
I.∫1−1x|x|dx=0 [∵x|x| is an odd function]
II.Let I= ∫π/20[1+(log4+3sinx4+3cosx)]dx
I=∫π/20(1+[log4+3sin(π2−x)4+3cos(π2−x))])dx
I=∫π/20(1+[log4+3cosx4+3sinx])dx
⇒ 2I=∫π/20(2+log4+3sinx4+3cosx+log4+3cosx4+3sinx)dx
⇒ 2I=∫π/20(2+log(4+3sinx)(4+3cosx)(4+3cosx)(4+3sinx))
⇒ 2I=∫π/20(2+log1)dx=∫π/202dx=π
⇒ I=π2
III. ∫a0f(x)dx=∫a0f(a−x)dx
IV. ∫a−af(x)dx=∫a0f(x)dx+∫a0f(−x)dx
= ∫a0[f(x)+f(−x)]dx