Processing math: 100%


1)

Consider the circle x2+y26x+4y=12. The equations of a tangent of this circle that is parallel to the line x+3y+5=0


A) 4x+3y+10=0

B) 4x+3y-9=0

C) 4x+3y+9=0

D) 4x+3y-31=0

Answer:

Option D

Explanation:

We have ,

x2+y26x+4y=12.

  (x3)2+(y+2)2=25

     (x3)2+(y+2)2=52

 Equation of tangent  whose slope m is 

  y+2=m(x3)±5m2+1   .......(i)

 Now, this tangent is parallel to line 4x+3y+5=0

   slope of line is -43

 Put the value of m= -43 is Eq.(i) , we get

   y+2=43(x3)±5(43)2+1

      y+2=43(x3)±5(53)

    3y+6=4x+12±25

   4x+3y=6±25

   4x+3y=31 or 4x+3y=19

Hence , equation  of tangent is 

   4x+3y31=0 or  4x+3y+19=0