Answer:
Option D
Explanation:
We have ,
x2+y2−6x+4y=12.
⇒ (x−3)2+(y+2)2=25
⇒ (x−3)2+(y+2)2=52
Equation of tangent whose slope m is
y+2=m(x−3)±5√m2+1 .......(i)
Now, this tangent is parallel to line 4x+3y+5=0
∴ slope of line is -43
Put the value of m= -43 is Eq.(i) , we get
y+2=−43(x−3)±5√(−43)2+1
⇒ y+2=−43(x−3)±5(53)
⇒ 3y+6=−4x+12±25
⇒ 4x+3y=6±25
⇒ 4x+3y=31 or 4x+3y=−19
Hence , equation of tangent is
4x+3y−31=0 or 4x+3y+19=0