1)

If  $\tan 20^{0}= \lambda ,$ then

 $\frac{\tan 160^{0}-\tan 110^{0}}{1+(\tan 160^{0})(\tan 110^{0})}=$


A) $\frac{1+\lambda^{2}}{2\lambda}$

B) $\frac{1+\lambda^{2}}{\lambda}$

C) $\frac{1-\lambda^{2}}{\lambda}$

D) $\frac{1-\lambda^{2}}{2\lambda}$

Answer:

Option D

Explanation:

Given, $\tan 20^{0}= \lambda$

  $\therefore$     $\frac{\tan 160^{0}-\tan 110^{0}}{1+ (\tan 160^{0})(\tan 110^{0}) }$

  =$\frac{\tan (180^{0}-20^{0})-\tan (90^{0}+20^{0})}{1+ (\tan( 180^{0}-20^{0})(\tan 90^{0}+20^{0}) }$

 $=\frac{-\tan 20^{0}+\cot 20^{0}}{1+ \tan 20^{0} \cot 20^{0}}$

            $[ \because  \tan (180^{0}-\theta)=-\tan \theta; \tan (90^{0}+\theta)=-\cot \theta]$

 = $\frac{ -\lambda+1/\lambda}{1+1}$

   =$\frac{-\lambda^{2}+1}{2 \lambda}$

=$\frac{1- \lambda^{2}}{2 \lambda}$