Answer:
Option A
Explanation:
when a child moves in a circular track, he is acted upon by two forces as shown below.
Here fc =f sin $\theta$ and ft= f cos $\theta$,
As fc is the centripetal force and ft= is the tangential force. so
$f_{c}=\frac{mv^{2}}{r}=f\sin\theta$
and $f_{t}= ma= f \cos\theta$
$\therefore$ Resultant force, $f_{R}= \sqrt{(f \sin\theta)^{2}+(f\cos\theta)^{2}}$
$=\sqrt{\left(\frac{mv^{2}}{r}\right)^{2}+(ma)^{2}}$
Also, when the shoes starts slipping , the friction becomes equal to resultant force.
$\therefore$ f= fR
$\mu mg=\sqrt{\left(\frac{mv^{2}}{r}\right)^{2}+(ma)^{2}}$
$\mu^{2} m^{2}g^{2}=\frac{m^{2}v^{4}}{r^{2}}+m^{2}a^{2}$
$\mu^{2}g^{2}=\frac{(at)^{4}+a^{2}r^{2}}{r^{2}}$ $\left( \because a=\frac{v}{t}\right)$
or $\mu^{}=\frac{(a^{4}t^{4}+a^{2}r^{2})^{1/2}}{gr}$