Answer:
Option A
Explanation:
Using the principle of continuity,
A1 V1= A2 V2 .............(i)
where, A1 is the area of square hole, A1= a2,
A2 is the area of circular hole, $A_{2}=\pi r^{2}$,
v1 is the velocity at depth y, $v_{1}=\sqrt{2gy}$
and v2 is the velocity at depth 16y, $v_{2}=\sqrt{2g(16y)}$
Substituting values in Eq.(i) , we get
$a^{2}(\sqrt{2gy})=\pi r^{2}(\sqrt{2g(16y)})$
$a^{2}(\sqrt{2gy})=4\pi r^{2}(\sqrt{2gy})$
$r^{2}=\frac{a^{2}}{4\pi}$
$\therefore$ $ r=\frac{a^{}}{2\sqrt{\pi}}$