Answer:
Option A
Explanation:
we have ,
$f(x)=\begin{cases}3(1-2x^{2}), & 0<x<1\\0, & otherwise\end{cases}$
$F(x=n)=P(X\leq x)=\int_{0}^{x}f(x) dx $
=$\int_{0}^{x}3(1-2x^{2}) dx$
= $\left[3\left(x-\frac{2x^{3}}{3}\right)\right]_{0}^{x}=3\left(x-\frac{2x^{3}}{3}\right)$
$\therefore$ k=3