1)
With usual notations, if the angles A,B,C of a △ABC are in AP and b:c= √3:√2
Answer:
Option A
Explanation:
In △ABC,
∠A,∠B,∠C are in A.P
∴ 2∠B= ∠A+∠C.............(i)
and ∠A+∠B+∠C=1800..........(ii)
From eqs.(i) and (ii) , B= 60°
∴ bsinB=csinC
⇒sinBsinC=bc
⇒sin600sinC=√3√2 [∵ given b:c=√3:√2]
⇒sinC=√2×√3√3×2=1√2
∴ sin C= sin 45°
⇒ C=45°
∠A=2∠B−∠C=1200−450=750