Answer:
Option A
Explanation:
Given line,
$\frac{x-1}{4}=\frac{y-3}{1}=\frac{z}{8}$ and
$\frac{x-2}{2}=\frac{y+1}{2}=\frac{z-4}{1}$
Here, a1=4, b1=1, c1=8
a2=2, b2 =2, c2=1
$\therefore$ $\cos\theta=\frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{(\sqrt{a_1^2+b_1^2+c_1^2})(\sqrt{a_2^2+b_2^2+c_2^2})}$
$\Rightarrow $ $\cos\theta=\frac{8+2+8}{(\sqrt{16+1+64})(\sqrt{4+4+1})}$
$\Rightarrow $ $\cos\theta=\frac{18}{9\times3}=\frac{2}{3}$
$\Rightarrow $ $ \theta=\cos^{-1}\left(\frac{2}{3}\right)$