Answer:
Option C
Explanation:
We have,
$\tan^{-1}\left(\frac{1}{3}\right)+\tan^{-1}\left(\frac{1}{5}\right)+\tan^{-1}\left(\frac{1}{7}\right)+\tan^{-1}\left(\frac{1}{8}\right)$
= $\tan^{-1}\left(\frac{\frac{1}{3}+\frac{1}{5}}{1-\frac{1}{3}\times\frac{1}{5}}\right)+\tan^{-1}\left(\frac{\frac{1}{7}+\frac{1}{8}}{1-\frac{1}{7}\times\frac{1}{8}}\right)$
=$\tan^{-1}\left(\frac{8}{14}\right)+\tan^{-1}\left(\frac{15}{55}\right)$
= $\tan^{-1}\left(\frac{4}{7}\right)+\tan^{-1}\left(\frac{3}{11}\right)$
= $\tan^{-1}\left(\frac{\frac{4}{7}+\frac{3}{11}}{1-\frac{4}{7}\times\frac{3}{11}}\right)$
= $\tan^{-1}\left(\frac{65}{65}\right)=\tan^{-1} 1=\frac{\pi}{4}$