1) The value of tan−1(13)+tan−1(15)+tan−1(17)+tan−1(18) is A) π6 B) π3 C) π4 D) π12 Answer: Option CExplanation: We have, tan−1(13)+tan−1(15)+tan−1(17)+tan−1(18) = tan−1(13+151−13×15)+tan−1(17+181−17×18) =tan−1(814)+tan−1(1555) = tan−1(47)+tan−1(311) = tan−1(47+3111−47×311) = tan−1(6565)=tan−11=π4