Answer:
Option B
Explanation:
Given, points (5,7) ,(2,-2) and (-2,0) lie on circle
Let (h,k) be centre of circle
$\therefore$ OA=OC
$\therefore$ $(h+2)^{2}+k^{2}= (h-5)^{2}+(k-7)^{2}$
$\Rightarrow h^{2}+4h+4+k^{2}= h^{2}-10h+25+k^{2}-14k+49$
$\Rightarrow 14h+14k=70$
h+k=5 .............(i)
When OA=OB
$\therefore$ $ (h+2)^{2}+k^{2}= (h-2)^{2}+(k+2)^{2}$
$ \Rightarrow h^{2}+4h+4+k^{2}= h^{2}-4h+4+k^{2}+4k+4$
$ \Rightarrow 8h-4k=4$
2h-k=1 .........(ii)
From eqs. (i) and (ii) we get
h=2, k=3
$\therefore$ Centre of circle (2,3)
Radius of circle OA= $\sqrt{(2+2)^{2}+3^{2}}$
OA= $\sqrt{4^{2}+3^{2}}=\sqrt{16+9}=\sqrt{25}=5 units$