Answer:
Option A
Explanation:
We have
f(x)={1x−1if0≤x≤2,x+5x+3,if2<x≤4
Clearly , f(x) is not defined at x=1
Hence , f(x) is discontinuous at x=1
At x=2
limx→2−f(x)=limx→2−1x−1=12−1=1
limx→2+f(x)=limx→2+x+5x+3=2+52+3=75
∴ \lim_{x \rightarrow {2^{-}}}f(x)\neq\lim_{x \rightarrow {2^{+}}}f(x)
\therefore f(x) is discontinuous at x=2