Loading [MathJax]/jax/element/mml/optable/MathOperators.js


1)

 The points of discontinuity of the function

f(x)=1x1,if0x2

   =x+5x+3,if2<x4

 in its domain are


A) x=1,x=2

B) x=0, x=2

C) x=2 only

D) x=4 only

Answer:

Option A

Explanation:

 We have

f(x)={1x1if0x2,x+5x+3,if2<x4

 Clearly , f(x) is not defined at x=1

 Hence , f(x) is discontinuous at x=1

 At x=2

  limx2f(x)=limx21x1=121=1

limx2+f(x)=limx2+x+5x+3=2+52+3=75 

   \lim_{x \rightarrow {2^{-}}}f(x)\neq\lim_{x \rightarrow {2^{+}}}f(x)

 \therefore     f(x) is discontinuous at x=2