Answer:
Option A
Explanation:
We have
$f(x)=\begin{cases}\frac{1}{x-1} & if 0\leq x\leq2,\\\frac{x+5}{x+3}, & if 2<x \leq4\end{cases}$
Clearly , f(x) is not defined at x=1
Hence , f(x) is discontinuous at x=1
At x=2
$\lim_{x \rightarrow {2^{-}}}f(x)=\lim_{x \rightarrow {2^{-}}}\frac{1}{x-1}=\frac{1}{2-1} =1$
$\lim_{x \rightarrow {2^{+}}}f(x)=\lim_{x \rightarrow {2^{+}}}\frac{x+5}{x+3}=\frac{2+5}{2+3} =\frac{7}{5}$
$\therefore$ $\lim_{x \rightarrow {2^{-}}}f(x)\neq\lim_{x \rightarrow {2^{+}}}f(x)$
$\therefore$ f(x) is discontinuous at x=2