Answer:
Option A
Explanation:
We have
$\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=4$
squaring both sides , we get
$\frac{x}{y}+\frac{y}{x}+2=16$
$x^{2}+y^{2}=14xy$
On differentiating w.r.t 'x' , we get
$2x+2y\frac{dy}{dx}=14\left(x\frac{dy}{dx}+y\right)$
$x+y\frac{dy}{dx}=7x\frac{dy}{dx}+7y$
$\frac{dy}{dx}(y-7x)=7y-x$
$\frac{dy}{dx}=\frac{7y-x}{y-7x}$