Answer:
Option B
Explanation:
The maximum stress produced in a rope is given by
$\sigma_{max}=\frac{Force}{Area}=\frac{Mg}{\pi r^{2}}$
As the lift is accelerationg with acceleration a, then
$\sigma_{max}=\frac{M(g\pm a)}{\pi r^{2}}$
$\Rightarrow $ $r^{2}=\frac{M(g\pm a)}{\pi S}$ [ Given , $\sigma_{max}$ = S]
$ \frac{d^{2}}{4}=\frac{M(g\pm a)}{\pi S}$ $\left[\because r=\frac{d}{2}\right]$
$d= \sqrt{\frac{4M(g\pm a)}{\pi S}}$
As acceleration is maximum i.e, g'= g+a, so
$d= \sqrt{\frac{4M(g\pm a)}{\pi S}}$