1)

Find the wrong statement from the following about the equation of stationary wave given by Y=0.04  cos ($\pi$x) sin (50 $\pi$ t) m where t is in second. Then for the stationary wave.


A) Time period =0.02 s

B) Wavelength=2 m

C) velocity =50 m/s

D) amplitude=0.02m

Answer:

Option A

Explanation:

 Key idea .  The displacement  of a wave in term of time period is given by

$y= A\sin\left[ 2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right]$

 This equation in terms of speed of wave (v) becomes   $y= A\sin\left[ \frac{2\pi}{\lambda}(vt-x)\right]$

 The given equation of wave is 

$y= 0.04 \cos (\pi x) \sin (50 \pi t)$

  $y= 0.02 \sin(50 \pi t+ \pi x)+0.02 \sin (50 \pi t- \pi x)$

[$\because$     $ 2 \sin A\cos B= \sin (A+B) .\cos (A-B)]$

 Thus, the given wave is the combination of two waves.

 $y_{1}=0.02 \sin (50 \pi t+\pi x)$     ( in -ve x- direction)

and   $y_{2}=0.02 \sin (50 \pi t-\pi x)$         (in +ve x direction )

 Comparing them with the general equation  of wave  $a\sin (\omega t+kx)$, we get

 Amplitude  , a= 0.02 m

 Time period , T=  $\frac{2 \pi}{50 \pi}= \frac{1}{25}=0.04 s$

 Wave length ,  $\lambda= \frac{2 \pi}{\pi}=2 m$

 velocity ,  v=  $ \frac{50 \pi\times \lambda}{2 \pi}=\frac{100}{2}=50 ms^{-1}$

     So, option (a) is wrong