Answer:
Option D
Explanation:
Given, the coefficient of linear expansion,
$\alpha=9\times10^{-7}{^{o}C^{-1}}$
Initial time period , T0 =0.5 s, initial temperature Ti= 20° C and final temperature , Tf= 30° C
Expansion in length , $\triangle l=l\propto(T_{f}-T_{i})$
$\Rightarrow$ $\triangle l=l\times 9\times 10^{-7}(30-20)$
Now, the time period of pendulum,
$T=2\pi\sqrt{\frac{l}{g}}$
error in time period,
$\Rightarrow $ $ \frac{\triangle t}{T}=\frac{1}{2}\frac{\triangle l}{l}+\frac{1}{2}\frac{\triangle g}{g}$
since, $\triangle g$ =0
$\Rightarrow $ $ \frac{\triangle T}{T}=\frac{1}{2}\frac{\triangle l}{l}$
Now, substituting values in the above equation, we get
$\Rightarrow$ $ \frac{\triangle T}{0.5}=\frac{1}{2}\left[\frac{l\times 9 \times 10^{-7}}{l}(30-20)\right]$
$\Rightarrow$ $ \triangle T=\frac{0.5\times 9 \times 10^{-7}\times10}{2}$
$\Rightarrow$ $ \triangle T=2.25 \times 10^{-6}s$