1)

 In air, a charged soap bubble of radius 'R'  breaks into 27 small soap bubbles of equal radius 'r'. Then the ratio of mechanical force acting per unit area of a big soap bubble to that of a small soap bubble is 


A) $\frac{1}{81}$

B) $\frac{1}{1}$

C) $\frac{1}{3}$

D) $\frac{9}{1}$

Answer:

Option C

Explanation:

 Key Idea The force per unit area is pressure. The pressure inside a soap bubble of radius R, is given by

$P=\frac{4T}{R}$

 where T= surface tension

 and R= radius of the drop

 the pressure inside a soap bubble, $P=\frac{4T}{R}$

 If a bubble is broken into 27 small soap bubbles then the volume of single bubble of radius  R and the combined volume of 27 bubbles of radius r would be constant.

 27 x volume of small bubbles = volume of larger bubble

 $\Rightarrow$     $ 27\left(\frac{4}{3}\pi r^{3}\right)=\frac{4}{3}\pi R^{3}$

 $\Rightarrow $    $27 r^{3}= R^{3}$

 $\Rightarrow $    $r=\frac{R}{3}$   .............(i)

Now, the pressure inside smaller soap bubble,

 $P_{small}=\frac{4T}{r}=\frac{12 T}{R}$   (using the relation)

 and similarly    $P_{large}=\frac{4t}{R}$

 $\therefore$    Ratio  of pressure  of the smaller and larger  soap bubble is given as, 

$\frac{P_{larger}}{P_{small}}=\frac{4T}{R}\times\frac{R}{12T}=\frac{1}{3}$

  $P_{larger}:{P_{small}}=1:3$

 Hence, the ratio of mechanical  force acting per unit area of big soap bubble to that of a small bubble is 1:3