1) ∫x2+1x4−x2+1dx=....... A) tan−1(x2+12)+c B) tan−1(x2)+c C) tan−1(x2−12)+c D) tan−1(2x2−1)+c Answer: Option CExplanation:Let l= ∫x2+1x4−x2+1dx = ∫1+1x2x2−1+1x2dx=∫1+1x2(x−1x)2+1 put x−1x=t (1+1x2)dx=dt ∴ l=∫dtt2+1)=tan−1(t)+c =tan−1(x−1x)+c=tan−1(x2−1x)+c